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for the Excluded Volume Problem

MAHADEVAPPA KUMBAR

Department of Chemistry
Adelphi University
Garden City, New York 11330

ABSTRACT

A comparative study of five distribution {unctions for
excluded volume problem has been made. The function

of Domb et al., Mazur, Gray et al., Reiss, and Kumbar
have been compared with themselves and with the Gaussian
function. All functions except the Gray et al. function as-
sume the bell shape or a2 shape similar to it. All five
functions shift the maximum point toward greater r. The
shift is small for Domb et al., Mazur, Reiss, and Kumbar
functions, and is large for Gray et al. function. It is in-
dicated that the excluded volume function probably has the
bell shape. The curves become much steeper with a shift
in the maximum point toward lower r when local chain
stiffness is included. The mean square end-to-end distance
is represented in a three-parameter equation for the in-
clusion of local chain stiffness™

2 1+
{rn) = A+ Bn"¢

The curves are much sharper when the influence of stiif-
ness is considered in the presence of high excluded volume,
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indicating the greater role of chain stiffness when the chain
is in the state of hicgh expansion.

INTRODUCTION

The problem of configurational statistics of single polymer or
polymer solution is a complicated subject. If we are talking of a
polymer molecule, the configuration is usually characterized by two-
dimensional properties, namely, the mean square end-to-end distance
and the mean square radius (mean square radius of gyration).
Similarly the polymer solution can be characterized on the basis of
the characterization of a single polymer molecule. The problem of
studying the polymer molecule in a2 Gaussian status has been
thoroughly explored, and has led to a better understanding of
polymer statistics. The success involved is mainly due to the
mathematical ease of treating the Gaussian problem. However,
the Gaussian status of the polymer molecule is the most simplified
version of the real status. In reality, the polymer molecule deviates
from the Gaussian status and is situated in a non-Gaussian status
for a variety of reasons. Even though a great deal of orogress has
been achieved over the last decade in understanding the non-Gaussian
status, the knowledge accumulated is still not complete. The reascn
for this is simply the mathematical difficulties or numerical dif-
ficulties involved in treating the non-Gaussian status.

In the present work we have concentrated on one aspect of the
non-Gaussian status, the excluded volume etfect. In dealing with
the non-Gaussian problem, two kinds of approaches have been used.
The studies based on an analytical treatment have used an expansioen
type of parameter to represent the non-Gaussian status:

2

a® = (xP)/(xy) (1)

where x i3 either the end-to-end distance or the mean square radius.
The term in the numerator describes the oroperty in the non-Gaussian
status, while the term in the denominator describes the same property
in the Gaussian status. This kind of approach is more general and
certainly is not restricted to the excluded volume problem only. The
other approach has been used in numerical studies where only the
intramolecular excluded volume has been accounted for. These
studies have proposed that the configurational property be represented
as

(%) = nl*¢ (2)
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where ¢ is the excluded volume parameter and n is the numbter of bonds
in a given polymer molecule.

The distribution function for the Gaussian or non-Gaussian status
plays an important role in polymer statistics. [t has been well
established that the polymer molecule in the Gaussian status obeys
the Gaussian distribution in the limit of large n. For the entire
range of n, one may use the exact formula developed by Treloar [1].
Kuhn and Grin [ 2], and James and Guth [ 3] also have proposed a
formula for this study. A comparative study of these Gaussian status
functions has been made by Treloar and by Jernigan and Flory [ 4].
As for the non-Gaussian function, there is no general rule such as
exists for Gaussian polymer molecule. In recent vears, few distribu-
tion functions for the excluded volume problem have been proposed
or used. Therefore, we thought it might be worthwhile to make a
comparative study of these functions. The comparison is made
between the functions and with the Gaussian function. Further, we
have examined the effect of local chain stiffness on the behavior of
these functions.

DISTRIBUTION FUNCTIONS

Tomb et al. {5] have proposed the following function based on a
numerical study (exact enumeration technique) of lattice models:

t

1
P(r)dr = Cnr exp [-(r/on) ] dr (3)
where
-1 1+1 (1 +1
Cn =0, I‘\ - /t

storhT 1+1 T 1+3
n n t t

where :’rn‘}, is the mean sguare end-to-end distance. t = 2.0 for the

(Gaussian problem and 2.5 for the excluded volume problem, and 1 = t.
Fisher [ 6] further suggested that t = 2.0/(1 -¢), where ¢ is the ex-
cluded volume parameter given in Eq. (2),

Mazur [ 7] proposed a very similar function, again based on the
numerical study (Monte Carlo method) of lattice models:

P(ridr =ak®'? exp (-b’ kt/zz-t)r2 dr (4
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where

a =t/T(3/t) [T(5/)/T(3/4)]"*

b' = T(5/t)/T(3/)
and
k = (rnz)'1

t = 2.0 for the Gaussian problem and 3.2 for the excluded volume prob-
lem. In Egs. (3)and (4), I'(x) are the gamma functions.

Gray et al. [ 8] have used the following empirical function in
treating the hydrodynamic properties of biological molecules:

P(r) dr = (2/7)"2(3/6°n %2 exp (-3r¥/26%n ") dr (5)
where b is the bond length. This function has been proposed assum-
ing that the mean square length under excluded volume condition

is given by

(r,?) = o'nl"e (8)

Reiss [ 9], while applying the variational principle to the excluded
volume problem, has derived the following distribution function:

P(r) dr = {3/27b°n) exp (-3r’/2b%n) exp (-k,n/r) 471° dr &

where X, is the constant which depends on the temperature. This
equation assumes that only the repulsive potential is responsibie for
the excluded volume effect, and this kind of potential can be
described by the Coulombic type.

Kumbar { 10] modified the Reiss function while arguing that the
excluded volume effect arises not only by repulsive forces but also
to some extent by attractive forces, and the segments connected by
bonds behave like dipoles rather than point charges. He proposed
the following dipolar f{orm:

P(r) dr = (3/27b°n) exp (-3r°/2bn) exp (-k,n*/r*)47r’ dr  (8)

where k, is a constant which depends on the temperature.
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EFFECT OF CHAIN STIFFNESS

To investigate the effect of the local chain stiffness, we assumed
that the polymer chain under consideration can be represented by the
Rouse [ 11], Bueche [ 12], and Zimm [ 13] spring bead model. We
also assume- that the above-mentioned distribution functions also
apply to this model. The effect of chain stiffness on the behavior
of the distribution function can be studied by relating the chain stiff-
ness to mean square length. Previously [ 14] we derived an equation
for the mean square radius of linear molecules by using the above
model in terms of excluded volume and chain stiffness:

2 2 1+¢€
DL AT A (9)
n (48 + 1) 3 (2+¢€)(3+¢€)

where 3 measures the local chain stiffness. Then the mean square
length can be obtained through the relation

<rn=> ={2+€)(3 +¢€) <sn2>
which is
o {2+0) (34e’ b 1+E
(r)7) 5 (43/3) + {10)
48+1 (45+1
This equation can be put into a general form:
(r.*) = Ale 2) « B(b,3m € (11)
Ife=0,
<rn2> =~ A(2) + B(b,3)n (12)
and if 3=0,
(r*) =B(2m'"e (13)

Thus (rnz) can be described by the three-parameter Eq. (11) if the
chain stifiness is nonzero. This type of representation for (:-n2> was

previously suggested by Domb [ 15] who based his derivation on an
exact enumeration study of lattice models. In Ref. 14 we have also
proposed the three-parameter equation for the mean square radius.
If either excluded volume or chain stiffness is zero, the three-

parameter equaticn reduces to the two-parameter equation (Eq. 12
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or 13). I the experimental equation is available in the three-parameter
representation (Eq. 11), 3 and ¢ are easily evaluated by comparison.

COMPUTATION

The distribution functions given in Egs. (37, (4), (3), (7), and (3)
have been computed for the range 0 < r 30, where r is in arbitrary
units. We have chosenn =500, b =1, and ¢ =0, 0.2, and 0.5, While
studying the chain stiffness, we have selected 3= 0, 0.2, and 0.3. In
computation of Egs. (7) and (8), k, and k, are assigned the values 107°
and 107", respectively. The above selection of various parameters
are somewhat personal.

70~

Pir) x 103

F1G. 1. Plot of radial distribution functions vs r (—) Gaussian,
(=—) Domb et al., (=--) Mazur, and (--) Gray et al. functions. The
arrow indicates the maximum point of the Gaussian function.
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FIG. 2. Plot of distribution functions given in Egqs. (7Y and {(8)vs ¢
for two values of k, and k, for (-.-) Reiss and { ~-) Kumbar functions.
The arrow indicates the maximum point of the Gaussian function.

DISCUSSION

Figure i shows the radial distribution functions given in Egs. (3),
{4), and (3) for the same excluded volume parameter, ¢ = 0.2. The
Gaussian function has also been included in the same figure. The
effect of excluded volume as described by these functions is clearly
displayed The Gaussian function has a bell shape and has the dis-
tribution maximum at the point indicated by the arrow on the abscissa.
Domb et al. and Mazur functions retain the bell shape while shifting
the distributior maximum toward greater r. The Domb et al. function
is steeper than Mazur's function. However, both functions have their
function maximum at the same point. The shift in the maximum point
can be calculated by the difference between the function maximum
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F1G. 3. Plot of Gaussian function (¢ = 0) vs r for various 3 values.
(a) 3=0, (b) 3=0.1, and (¢) 3= 0.5. The arrow indicates the maximum
point of the Gaussian function.

point and the Gaussian maximum point. For these functions the shift
is very small. A further increase in ¢ has a similar effect on the dis-
tribution function. We have examined this effect on the Domb et al.
function (Fig. 3a) for ¢ = 0.5. The function is much sharper and the
shift in the maximum is larger. The function of Gray et al. behaves
much differently in the same range of r. First, this function is much
flatter, and second, the shift in maximum is too large. It certainly
does not retain the bell shape of the two previous functions. A further
increase in € makes the curve much flatter and shifts the maximum
toward greater r (see Fig. 7a). Figure 2 describes the distribution
functions given by Reiss and Kumbar for two values of k, and k,. It is
evident that the shape and the maximum point depend on these
constants. For k, and k, = 107*, both functions have the same behavior,
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which is very close to that of the Gaussian, as they should be. For a
higher value, for example, k, and k, = 1077, these functions still retain
the bell shape and shift the maximum point toward the right-hand side.
However, the Kumbar function has a larger shift than the Reiss function.

T

50 =

x 103

Plr)

30 c b

1 ! J I ! ! —L |
0 20 30 40 50
r

) vs r for various

FIG. 4. Plot of Domb et al. function (¢ = 0.2
= 0.5. The arrow indicates

values of 3. (2)5=0, (b)3=0.1,and (c) 8
the maximum point of the Gaussian function.

The effect of chain stiffness on the Gaussian function, the Domb
et al. function, and the Gray et al. functicn has been investigated.
Figure 3 describes the effect of chain stiffness on Gaussian function.
As the stiffness increases, the function becomes much sharper and
still retains the bell shape. Now the maximum point shifts toward
lower r, which is just opposite to that of the excluded volume effect.
Excluded volume functions in the presence of chain stiffness have
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x 103
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FIG., 5. Plot of Domb et al. function (e=0.3)vsrfor(a) 3=0
and (b) 2= 0.5. The arrow indicates the maximum point of the
Gaussian function.

the same benavior as has the Gaussian: Figs. 4 and 5 refer to the
Domb et al. function while Figs. 6 and 7 refer to the Gray et al.
function for two values of €. We have not investigated the effect of
chain stiffness on other functions. We assume that the behavior of
these functions is very similar to that of the Domb et al. function.

The distribution function maximum for various functions can be
calculated by using the formulas given in Table 1. [t is clear that
the maximum point depends on the excluded volume, chain stiff-
ness, and bond length. The function shifts are also given in the
same table. Table 2 shows the numerical values of shifts in the
maximum for varicus functions.

From the above discussion it can be concluded that, among the
five functions studied, only the Gray et al. function behaves
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TIG. 6. Plot of Gray et al, function (¢ = 0.2) vs r for (a)
S =0, (b)2=0.1,and (¢) 2 = 0.5. The arrow indicates the
maximum point of the Gaussian function.

differently. It does not retain the bell shape and has a relatively
large shift in maximum point. The other four functions retain
the beil shape and shift the maximum point relatively little. The
maximum of the Domb et al. and Mazur functions lies above the
Gaussian maximum, while that of Reiss, and Kumbar, and Gray
et al. lies below the Gaussian maximum. It is not clear whether
the bell shape is retained or not when the character is non-
Gaussian. Except for the Grayv et al. function, all other functions
indicate that the bell shape is probably retained. Certainly all
these functions agree that there is a shift in the maximum point
toward greater r. The effect of chain stiffness makes the
function much steeper and shifts the maximum toward lower r
whether it is Gaussian or non-Gaussian. In the presence of high
excluded volume, the stifiness has a greater effect as seen from
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FIG. 7. Plot of Gray et al. function {¢ = 0.5) for (a)3=10, (b)8=0.1, and
{c)2=0.5. The arrow indicates the maximum point of the Gaussian function.

TABLE 2. Numerical Values of Shift in Maximum Points

Gaussian €

8 0.0 0.2 Q.5
0 0 12 68
0.1 -3 11 535
0.5 -7 2 22
Domb et al a

0 2 4
0.1 -1 1
0.5 -7 -
k Reiss Kumbar
107F 1 3

107° 0 0

&This shift also corresponds to that of Mazur when
t=3.2
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the sharpness of the curves which can be verified from Fig. 5. This
can be viewed in terms of the greater role of stiffness when the chain
is in a state of high expansion.
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