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Comparative Study of Distribution Functions 
for the Excluded Volume Problem 

MVIAiIADEVXPPA KLTIBAR 

Department of Chemistry 
Adelphi University 
Garden City, New York 11530 

A B S T R A C T  

X comparative study of five distribution functions for  
excluded volume problem has been made. The function 
of Domb e t  al., M z u r ,  Gray et  al., Eieiss, and Kumbar 
have been c o n p a r e d  with themselves and with the Gaussian 
function. All functisns except the Gray et  al. function as- 
sume the bell shape o r  a shape s i m i l a r  t o  it. All five 
functions shif1 the mtLvirnum point toward g rea t e r  r. The  
shift is small  for  Domb et  at., Mazur,  Reiss ,  and Kumbar 
functions, and is large for  Gray et  al. function. It is in- 
dicated thar the excluded volume function probably nas the 
bell shape. The curves become much s t eepe r  with a s h i f t  
in the maximum point toward lower r when local chain 
st iffness is included. The mean square end-to-end distance 
i s  represented in a three-parameter  equation for the i n -  
clusion of local chain stiffness" 

The curves are much s h a r p e r  when the influence of stiff- 
n e s s  is considered in the presence of high excluded volume, 
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462 KLXBAR 

indicating the greater  role  of chain stiffness when the chain 
is in the s ta te  or' high espansion. 

I X T R O D U C T I O N  

The problem oi confiprat ional  s ta t is t ics  of sin5le polymer o r  
polymer solution is a complicated subject. If 7.ve a r e  talking of a 
polymer molecule, the configuration is usually characterized by two- 
dimensional properties,  namely, the mean square end-to-end distance 
and the mean square radius ( mean square radius of gyration). 
Similarly the polymer solution can be characterized on the basis of 
the characterization of a single polymer molecule. The problem oi 
studying the polymer molecule in a Gaussian status has been 
thoroughly explored, and has led to  a better understanding ot 
polymer statist ics.  The success  involved is mainly due to the 
mathematical ease  of treating the Gaussian problem. However, 
the Gaussian s ta tus  of the polymer molecule is the most simptified 
version of the real  status. In reali ty,  the polymer molecule deviates 
from the Gaussian s ta tus  and is situated in a non-Gaussian status 
€or a variety of reasons,  Even thous! a great deal of progress  has 
been achieved over the las t  decade in understanding the non-Gaussian 
status,  the howledge  accumulated is still not complete. The reason 
for  this is simply the mathematical difficulties o r  numerical dif- 
ficulties involved in treating the non-Gaussian status. 

in the present work we have concentrared on one aspect of the 
non-Gaussian status,  the excluded volume effect. In dealing v i th  
the non-Gaussian problem, tvo  kinds of approaches have been used. 
The studies based on an analytical treatment have used an expansion 
type of parameter  to  represent  the non-Gaussian status: 

There  x is ei ther  the end-to-end distance o r  the mean square radius. 
The term in the numerator descr ibes  the c r o p e n y  in the non-Gaussian 
status,  while the term in the denornicator descr ibes  the same property 
in the Gaussian status. This  kind of approach is more general and 
certainly is not res t r ic ted t o  the  axcluaed volume problem only. The 
other approach h a s  been used in numerical studies where only the 
intramolecular excluded volume h a s  been accounted for. These 
studies have proposed that the coniiguradonal property be represented 
as 

1 + E  (2)  cc n 
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E;XCLUDED V 0 L L . E  PROBLEM 463 

where E is the excluded voiume parameter  and n is the number of bonds 
i n  a given polymer molecule. 

The distribution function for the Gasssian o r  non-Gaussim status  
piays an important role in polymer statist ics.  It has been well 
established that the polymer molecule in the Gaussian statu:j obeys 
the Gaussian distribution in the limit of large n. For the ent i re  
range of n, one may use the exact formula developed by Tre loa r  [ 11. 
K-uhn and Griin 2 j  ! and James and Guth [ 3! also have proposed a 
formula for this study. A comparative study of these Gaussian s ta tus  
functions has  been made by Tre loa r  and by Jernigan and Flory [ 41. 
As fo r  the non-Gaussian functior.. there  is no general  rule such as 
exists fo r  Gaussian polymer molecule. In recent yea r s ,  few distribu- 
tion f-mctions for  the excluded volume problem have been proposed 
or used. Therefore ,  we thought it might be worthwhile to make a 
comparative study of these functions. The comparison is made 
between the functions and with the Gaussian function. Furth.er, we 
have examined the effect of local chain stiffness on the beha.vior of 
these functions. 

DI ST R I B UT I0 N F U K  CT I O K S  

Domb et al. [ 51 have proposed the following function based on a 
numerical study ( esact  enumeration technique I of lattice models: 

1 t P ( r )  d r  = Cnr  exp [-(r!un) ] d r  

where 

( 3 )  

v h e r e  t = i!.O fo r  the 

Gaussian problem and 2 . 5  fo r  the excluded volume problem, and 1 = t. 
‘Fisher [ 61 fur ther  suggested that t = 2.0/’! 1 - E ) ,  where E is the ex- 
cluded volume pa rame te r  given in Eq. ( 2) .  

Mazur [ 71 proposed a very s imi l a r  function, a s i n  based on the 
numerical  study i Monte Carlo method) of lattice models: 

r ’ i is the mean sq-are end-to-end distance. n 

( 4 )  
t;z_t 2 P(r: d r  = ak3 ’ esp r - b ’ k  I ) r  d r  
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where 

and 

k = (in2)-’ 

t = 2.0 f o r  the Gaussian problem and 3.2 for the excluded volume prob- 
lem. In Eqs. ( 3 )  and ( 4), r (x) are the gamma functions. 

treating the hydrodynamic properties of biological molecules: 
Gray et al. [ 81 have used the following empirical  funcrion in 

P( r )  dr = (2,”)’” (3/b‘n1CE!3/2 exp ( -3r’/2b2nnlCE)r’ dr ( 3) 

where b is the bond length. This  function has been groposed assurn- 
ing that the mean square length under excluded volume condition 
is given by 

1% (rn2) = b2n 

Reiss  [ 91, qhile  applying the variational principle to the excluded 
volume problem, has derived the following distribution function: 

where k ,  is the constant which depends on the temperature. This  
equation assumes  that only the repulsive potential is responsible for 
the excluded volume effect, and this kind of potential c z n  be 
described by the Coulombic type. 

excluded volume effect arises not only by repulsive forces but also 
to some e.xtent by attractive forces ,  and the segments connected by 
bonds behave like dipoles ra ther  than point charges. tie proposed 
the following dipolar form: 

Kumbar [ 101 modified the Reiss funczion while arguing that the 

P( r) dr = ( 3/2zb’ n) exp ! - 3r2/2b’ n) exp ( -k, n’ /r3 )4ar’ dr ( 8) 

where k, is a constant which depends on :he temperature. 
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E F F E C T  O F  CHAIN S T I F F N E S S  

T o  investigate the effect of the local chain stiffness. we assumed 
that the polymer chain under consideration can be represented by the 
Rouse [ 111, Bueche [ 121, and Zimm [ 131 spring bead model. We 
also a s s u m e  that the above-mentioned distribution functions also 
apply to  this model. The effect of chain st iffness on the behavior 
of the distribution function can be studied by relating the cnain stiff- 
ness  to mean square length. Previously [ 111 we derived an equation 
fo r  the mean square radius of l inear molecules by using tke above 
model in t e r m s  of excluded volume and cham stiffness: 

1 

L A 

where 3 measures  the local chain stiffness. Then the mean square 
length can be obtained through the relation 

which is 
b2 I+€ 

n ( 2  A < )  ( 3  i < ) b '  
<rn') = ( 4 3 / 3 )  + - 

4 3 i  1 (43c 1 

This  equation can be put into a general  form: 
;rn2) = A ( € ,  3 )  + B(b ,$ )n  I&€ 

L f € = O ,  
( r  ') =.4(,R) + B(b ,e ? ) n  n 

and if S = 0, 

( 10) 

Thus ;rn ')  can be described by the three-parameter  Eq. 
chain Stiffness is nonzero. This  type of representation for <F ') was 
previously suggested by Domb [ 151 who based his derivation on an 
exact enumeration study of latt ice models. In Ref. 14 we have also 
proposed the three-parameter  equation for the mean square radius. 
If ei ther excluded volume o r  chain stiffness i s  ze ro ,  the three- 
pa rame te r  equation reduces t o  the two-parameter equation (Eq. 12 

11) i f  the 

n 
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o r  13). If the experimental equation is available in the three-parameter 
representation (Eq .  111, 3 and E a r e  easily evaluated by comparison. 

C O M P U T X T  ION 

The distribution Functions g v e n  in Eqs. (31, ( 41, ( 5) ,  (?), and ( a )  
have been computed for the range 0 4 r Q 30, where r is in a rb i t ra ry  
units. We have chosen n = 500. b = 1, and E = 0, 0.2, and 0.5. While 
studying the chain sriffness, me have selected 3 = 0, 0.2, and 0.5. In 
computation oi Eqs. (71 and (a ) ,  k, and k? are assigned the values lo-’ 
and l o - + ,  respectively. The above selection of car ious parameters  
are somewhat personal. 

n 
0 

FIG. I. Plot of radial  distribution functions vs r ( - )  Gaussian, 
(--I Domb e t  al., ( - - - I  Mazur, and ( - - I  G m y  et  al. functions. The 
arrow indicates the maximum point of the Gaussian function. 
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i 

FIG. 2. Plot of distribution functions given in Eqs. ( 7 )  :tnd i 8) v s  r -- 1 Kumbar functions. fo r  two values of k ,  and k? f o r  ( -.-) Reiss and 
The  arrow indicates the maximum point of the Gaussian function. 

D I S C U S S I O X  

Figure 1 shows the radial  distribution functions given in Eqs. ( 3 ) .  
( 4!, and ( 51 f o r  t h e  s ame  excluded volume parameter ,  E = 0.2. The  
Gaussian function has a l so  been included in the s a m e  figure. The 
effect of escluded volume as described by these functions i.s clear ly  
displayed. The Gaussian fmction b.as a bell shape and has  the dis- 
tribution maximum at  the point indicated by the a r r o w  on the abscissa.  
Domb e t  al. and Mazur €unctions retain the bell shape while shifting 
the distribution masimum toward g rea t e r  r. The  Domb et  al. function 
is s teeper  than M a z u r ‘ s  function. However. both function:; have their  
function maximum at the same  point. The shift in the maximum point 
can be calculated by the difference between the function maximum 
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r 

FIG. 3. Plot of Gaussian function ( E  = 0) vs  r for various i3 values. 
( a )  J = 0, ( b )  3 = 0.1, and ( c )  3 = 0.5. The a r row indicates the maximum 
point of the Gaussian function. 

point and the Gaussian maximum point. For these functions the sh i f t  
is very small. A fur ther  increase in E h a s  a s imi la r  effect on the dis- 
tribution function. We have exarnined this effecr on the Dornb et  al. 
function (Fig. Sa) for  E = 0.5 .  The function is much sharper  and the 
shift in the maximum is larger .  The function of Gray et  al. behaves 
much differently in the same ,range of r. F i r s t ,  th i s  function is much 
flatter, and second, the shif t  in mzximum is too large. It certainly 
does not retain the bell shape of rhe two previous funcrions. A furrher  
increase in E makes the curve much flatter and shifts the maximum 
toward greater r (see Fig. ?a). Figure 2 descr ibes  the distribution 
functions given by Reiss and Kumbar for two values of k, and k2. It is 
evident that the shape and the maximum point depend on these 
constants. For k, and & = LO-', both functions have the same behavior, 
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EXCLGDED VOLLTAIE PROSLEM 469 

which is very  close to that of the Gaussian: as they should be. F o r  a 
higher value, for example,  k ,  and k2 = l o - ' ,  these  functions still re ta in  
the bell shape and shift the maximum point toward the right-hand side. 
However, the Kumbar function has a l a r g e r  shift than the  Iieiss function. 

FIG. 4. Plot of Domb et al. function (E = 0.2) v s  r fo r  var ious  
values of 5. ( a )  ,S = 0, (b) J = 0.1, and ( c )  $ = 0.5. The a x o w  indicates 
the maximum point of the Gaussian function. 

The  effect of chain st iffness on the Gaussian function, the Domb 
et al. function, and the Gray et al. functicn has been investigated. 
F i g r e  3 desc r ibes  the effect of chain st iffness on Gaussian function. 
A s  the stiffness inc reases ,  the function becomes much s h a r p e r  and 
still re ta ins  the bell shape. Now t h e  maximum point shifts  toward 
lower r,  which is just  opposite to t h a t  of the excluded volume effect. 
Escluded volume functions in the presence  of chain Stiffness have 
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r 

FIG. 5. Plot of Domb et al. function ( E = 0.5) vs r for  (a) 3 = 0 
and (b) 3 = 0.5. The a r r o w  indicates the maximum point of the 
Gaussian function. 

the same behavior as h a s  the Gaussian: Figs. 4 and 5 re fer  to the 
Domb e t  al. function while Figs. 6 and 7 re fer  to the Gray e t  al. 
function for  two values of E .  We have not investisated the effect of 
chain stiffness on other functions. We assume that the behavior of 
these functions is very similar to that of the Domb et al. function. 

The distribution function maximum for various functions can be 
calculated by using the formulas given in Table 1. It is c lear  that 
the maximum point depends on the excluded volume, chain stiff- 
ness, and bond length. The funcdon shifts are also given in the 
same table. Table 2 shows the numerical values of shifts in the 
maximum for  various functions. 

five functions studied, only the G m y  e t  al. function behaves 
From the above discussion it can be concluded that, among the 
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- 
R 
0 
L 30- 

L d 

a 

25 35 45 5 

FIG, 6. Plot of Gray et  al. funcrion ( E  = 0.2) v s  r for  (a)  
r -  - 0, (b; ,2 = 0.1, and ( c )  3 = 0.5. The a r row indicates the 
maximum point of the Gaussian function. 

differently. It does not rerain the bell shape and has a relatively 
large shift in maximum point. The other four functions retain 
the bell shape and shift the rnax2mum point relatively little. The 
niaslmurn of the Domb et  al. and LIazur functions lies above the 
Gizussian maximum? while that of Reiss ,  and Kumbar. and Gray  
et al. lies below t h e  Gaussian maximum. It is not c l ea r  whether 
the bell shape is retained o r  not when the character is non- 
Gaussian. Except for  the Gray et al. function, all other functions 
indicate that the beli shape is p-obably retained. 
rhese functions agree that there  is a shift  in the maximum point 
toward greater r. The effect of chain stiffness makes the 
function much s teeper  and shifts the maximum toward lower r 
whether i t  is Gaussian o r  non-Gaussian. In the presence of high 
esc!ucied volume, the stiffness has  a greater  effect as seen from 

Certainly all 
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r 

FIG. 7. Plot of G r a y  et  al. function ( E  = 0.5) for (a )  3= 0, (b) P =  0.1, and 
( c )  ,3 = 0.5. The arrow indicates the maximum point of the Gaussian function. 

TABLE 2. Numerical Values of Shift in Maximum Points 

Gaussian 
- 

E 

B 0.0 0.2 0.5 
0 0 
0.1 -3  
0.5 - 1  

Domb e t  al. 
0 
0.1 
0.5 

l a  
11 

2 

2a 
-1 
-7  

68 
55 
22 

4 
1 

k Reiss Kumbar  
lo-? 
lo-* 

1 
0 

3 
0 

5 h i s  shift also corresponds t o  that of Mazur when 
t = 3.2. 
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the sha rpness  of the cu rves  which can be verified from Fig. 5. This  
can  be viewed in t e r m s  of the greater role of s t i f fness  when the  chain 
is in a state of high expansion. 
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